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Abstract
Many economists argue that a national carbon tax
would be the most effective policy for incentivizing the
development of low-carbon energy technologies. Yet
existing models that measure the effects of a carbon
tax only consider carbon taxes with fixed schedules.
We propose a simple energy system transition model
based on a finite-horizon Markov Decision Process
(MDP) and use it to compare the carbon emissions
reductions achieved by static versus adaptive carbon
taxes. We find that in most cases, adaptive taxes
achieve equivalent if not lower emissions trajectories
while reducing the cost burden imposed by the carbon
tax. However, the MDP optimization in our model
adapted optimal policies to take advantage of the
expected carbon tax adjustment, which sometimes
resulted in the simulation missing its emissions targets.

1 Introduction
Modeling the transition to majority renewable energy systems

is critical as countries race to meet ambitious decarbonization
targets set for 2030, 2050, and even 2100. A growing coalition of
economists around the world contend that market-based tools like
a Pigouvian carbon tax [Rubio and Escriche, 2001] are critical
in incentivizing the low-carbon energy transition because they
internalize the social and environmental costs of carbon. A 2019
statement supporting carbon taxation with dividends, endorsed
by over 3500 economists in the U.S. including all four former
Chairs of the Federal Reserve, indicates strong support for carbon
taxes in theory [Akerlof et al., 2019]. Yet when it comes to
designing the most effective and least burdensome carbon tax,
both economists and policymakers are split.

In this paper, we use Markov Decision Processes (MDPs) to
study the effects of carbon taxes on electricity generation. The
carbon tax is embedded in the environment model of the MDP;
the agent represents the combination of electricity generators and
public financing, who must decide when to replace fossil fuel
generation with low carbon (renewable) generation. Since the
capital costs of power plants take several years to pay off, these
decisions can be difficult in the face of uncertainty, especially with
respect to technological advancements. For instance, postponing
the construction of renewable generation may seem appealing if
technology costs will decrease at some point in the future. Using

an MDP-based model allows us to capture strategic decision-
making by those responsible for building electricity generation.
As we will demonstrate, strategic decision-making will give rise to
interesting new purchasing behaviors under adaptive carbon taxes.

Our main contributions are as follows. We construct an MDP
model of investment in renewable generation under a carbon tax
and uncertain technological advancement. This model is able to
stochastically match technological projections for 2030 and 2050,
and captures the need for exponentially increasing carbon taxes to
drive higher renewable penetration. This model allows us to study
the effects of adaptive carbon taxes as proposed by Aldy [2017].
We find that adaptive carbon taxes, which are adjusted at regular
time intervals, can yield carbon emissions reductions closer to
desired targets than static ones, even if a multi-year delay is
imposed on tax adjustments. However, we also find that this
simple class of adaptive tax policies are sometimes “manipulated”
by a strategic agent, which can cause the MDP optimal policy
to miss its target carbon emissions reduction.

Background. The energy system modeled in this paper repre-
sents an isolated electric grid. The load on the grid refers to the en-
ergy (in kWh) required by consumers, which is equal to the power
required over some period of time. The reliability of a grid system
is often measured as how promptly it supplies the required load.

There are several costs associated with an electricity generating
power plant. The first type is capital cost, or the one-time,
initial cost of construction. Capital costs depend on the size or
nameplate capacity of the power plant (in kW or MW). The
second type is operation and maintenance (O&M) cost, or the
continual cost of keeping the plant running. O&M costs are
further broken down into fixed costs, which depend on the size of
the power plant, and variable costs, which depend on how much
power is actually produced.

One benefit of fossil fuel generation is its ability to provide a
stable base load, or minimum power output, for long periods of
time. Renewable energy suffers from intermittency, which refers
to the inherently unpredictable nature of renewable resources such
as wind and solar radiation. As renewable penetration of the
grid, or the percentage of electricity generated by renewable en-
ergy plants, increases, the power supply becomes increasingly
unreliable [Initiative and others, 2012; Wang et al., 2012].

Energy storage is often hailed as the holy grail solution
to intermittency. However, the main downside of storage
technologies, especially batteries, is their prohibitive cost. A
2018 study published in Energy & Environmental Science found



that meeting 80% of electricity demand in the U.S. with wind
and solar power would require either a nationwide high-speed
transmission system to balance excess supply and demand over
hundreds of miles, or 12 hours of electricity storage for the entire
system [Shaner et al., 2018]. The MIT Tech Review estimates
the cost of the latter option at 2.5 trillion USD [Temple, 2018].

One strategy for incentivizing renewable energy development
is redirecting funds from a carbon tax into R&D. Designing a
carbon tax is a complex process, involving 1) the base price or tax
rate, 2) the annual change in price, 3) to which materials the tax
applies, 4) at what point in the supply chain the tax is applied, and
5) how tax revenues are spent [Larsen et al., 2018]. The carbon
tax schedule that we use as a baseline in this paper starts at $41.84
per ton (2020-USD) and increases by 5% annually. This schedule
was proposed in 2017 by the Climate Leadership Council (CLC)
[Baker et al., 2019]. A sensitivity analysis using the E3 CGE
model [Goulder and Hafstead, 2013] of the U.S. showed that
this CLC proposed carbon tax would lead to 50% fewer carbon
emissions relative to 2005 levels by 2035 [Hafstead, 2019].

Related Work. Several studies have explored the feasibility of
100% renewable energy systems by 2050. The widely used LUT
Energy System Transition Model incorporates power, heat, and
transportation sectors, as well as carbon removal and desalination.
Child et al. [2019] demonstrated the feasibility of achieving
100% renewable energy in Europe by 2050 using this model.
The TIMES economic model generator is another popular family
of models—given primary energy sources, energy end usage,
and availability of future technology, the TIMES model aims to
supply energy services at minimum global cost [Loulou, 2016].
Krakowski et al. applied a TIMES model to analyze transitions
to 40–100% renewable penetration in France by 2050 [2016].

As a major tool in driving renewable energy development,
carbon taxes have been analyzed in many case studies, including
those on Sweden [Andersson, 2019], Canada [Liu et al., 2018],
and China [Ding et al., 2019]; findings widely agree on the
efficacy of carbon taxes in reducing projected emissions curves.
However, most carbon tax scenarios are modeled with respect to
specific geographic areas. In addition, the models used to measure
emissions reductions and optimize carbon prices only consider
carbon taxes with a flat rate or a static (deterministic) schedule.

Yet carbon taxes must be able to adapt to an uncertain world
[Aldy, 2017]. Aldy proposes a policy approach to adjusting
a carbon tax at five year intervals based on carbon emission
levels, climate predictions, tax schemes of other countries, and
the economic burden imposed by the tax. Beyond just testing
different starting prices for a static carbon tax, current models
lack the capacity to test taxes that adapt based on these conditions.

2 Problem Formulation
The guiding question underlying our model is: given a carbon tax
incentive, how does a 100% fossil fuel energy system transition
to a lower-carbon renewable energy system over time?

We consider an energy system observed over a fixed time span,
in which each power plant begins as fossil fuel and can be con-
verted into renewable energy. As renewable penetration increases,
energy storage required to address intermittency also increases.
To account for technological advancement, the cost of building
renewable plants and storage stochastically decreases with time.

Formally, we model the conversion of fossil fuel (FF) plants
into renewable energy (RES) plants given the following param-
eters: 1) a finite time horizon, 2) an initial number of fossil fuel
plants, 3) stochastically decreasing costs of technology, 4) storage
requirements based on renewable penetration, and 5) carbon tax
schedule. The problem is formulated as a finite-horizon Markov
Decision Process (MDP) [Puterman, 2014].
Tech Stage. To capture decreasing costs of technology over
time, we consider discrete “tech stages” calibrated to technolog-
ical projections. We assign some probability pv of moving on
to tech stage v+1 given that v is the current tech stage.

pv=
1

nv
(1)

where nv is the expected number of years in tech stage v.
Energy Storage. A 2019 survey of E.U. countries aggregated
estimates for the energy storage required to support different
levels of renewable penetration [Zsiborács et al., 2019]. We
used the U.K. data points from this survey to fit an exponentially
increasing function that calculates the required energy storage
as a percentage of total system load:

S(r)=c0·exp(c1·100r)+c2 (2)

where S(r) is the total storage required to support r percent
renewable penetration.
Carbon Tax. To incentivize building RES plants, our model
uses a per-ton carbon tax, which applies a growth rate of 5%
per year on top of a base price. The base price may be one of
three values, allowing the carbon tax to be adjusted up or down.
We implemented a simple version of the update mechanism
proposed by Aldy [2017]: if in year t carbon emission levels are
above/below the target for that year by some delta, cinit will move
up/down one level starting in year t+D, where D is the interval
length in years. This delay ensures that the tax recipients have
some time to plan ahead for the change in carbon prices.
MDP Setup. In the finite horizon case, the MDP is defined
by a controlled, dynamic system and a cost or reward structure;
this becomes the objective function in the optimization. Starting
from some initial state, the “agent” in the model must choose a
sequence of actions that minimizes its cost over the finite horizon.
In our case, the optimal policy defines a schedule for converting
FF plants into RES plants that incurs the lowest total cost.
States and Actions. We define state as a combination of valid
values for the variables listed in Table 1. A policy can take action
a from state (t,v,r,l,e) to convert a FF plants into RES plants
where a∈{i∈Z : 0≤ i≤nplants} and nplants is the total number
of power plants in the system. Converting a FF plant into a RES
plant involves building a new RES plant as well as the required
amount of energy storage. No action can convert a RES plant
back into a FF plant, or shut down any existing plants.
Transition Probabilities. Let Ei refer to the carbon tax in state
i and pvi to the probability of moving into tech stage vi+1. Given
an action a, the transition probability of some state (ti,vi,ri,li,ei)
to any state (tj,vj,rj,lj,ej) obeys the following rules:

States pairs where pij=0 always:
i) tj<ti (cannot go backwards in time)
ii) vj<vi (cannot revert to a previous tech stage)



Variable Name Description Range
t Time Timestep in MDP [0, nyears)
v Tech Stage Stage of technological development [0, 2]
r RES Plants Number of renewable plants existing at beginning of year [0, nyears]
l Tax Level Base value used in calculating price per ton of carbon [0.8cbase,1.2cbase]
e Tax Adjustment How to adjust tax level in the next tax cycle [-1, 1]

Table 1: MDP model state variables, where nyears is the length of the time horizon, nplants is the total number power plants in the system, and cbase
is the default base price of carbon.

iii) rj 6=ri+a (must build exactly a RES plants)
All other state pairs:

i) pij=pvi if vj=vi+1
ii) pij=1−pvi if vj=vi
iii) pij=0 otherwise

If D is the tax adjustment interval length, then e and l are ig-
nored unless t modD is 0. In these years (when a tax adjustment
may be made) transition probabilities are split amongst states in
which the tax level, l, increases, decreases, or remains the same.

Cost Function. Given a state (t,v,r) and an action a taken in
that state, the cost can be calculated as follows:

C(t,v,r,a)=
∑
f

(Cco2(t)+Cff))

+
∑
r

Cold-res(v)+
∑
a

Cnew-res(v)

+Cold-stor(r,a)+Cnew-stor(v,r,a)

(3)

where f = nplants− r is the remaining FF plants at the end of
time step t, CFF is the cost paid for FF plants, Cold-RES is the
cost paid for existing RES plants, Cnew-RES the cost paid for
RES plants built in the time step t, Cold-stor is the cost paid for
existing storage, and Cnew-stor is the cost paid for building storage
required to support a new RES plants. See Appendix B for the
full calculation of each cost component.

3 Results and Discussion
In our simulations, increasing the base price of the carbon tax

has diminishing returns in terms of decreasing carbon emissions.
For instance, taxes in the 40 USD/ton range achieve about 30%
renewable penetration by 2050, while in the 100 USD/ton range
achieve about 60% and above 120 USD/ton achieve about 70%.
The costs of building RES plants are severely dominated by
energy storage requirements, indicating that, especially towards
higher renewable penetration levels, decreased costs of wind/solar
have a negligible effect on incentivizing further building since
storage costs remain exponentially high.1

We find that adaptive carbon taxes (AT) may reduce uncertainty
in renewable penetration compared to static carbon taxes (ST).
For these experiments, we fixed the cycle of adjustment at five
years to align with the proposal by Aldy [2017].

1Considering a mixture of storage, transmission and extra generation
could reduce costs below what is required with storage alone [Williams
et al., 2012], but we would expect similar high-level trends.

Table 2: A subset of the national carbon taxes implemented in 2020. We
selected countries to show an even spread of starting carbon prices.

Country 2020-USD/ton
United Kingdom 23.63

United States 41.84
Finland 68.52

Switzerland 99.11
Sweden 123.18

We used starting prices of carbon based on national carbon
taxes currently implemented in various countries [The World
Bank, 2020]—see Table 2. We set a 20% difference in price
between each level for each country. For instance, the tax levels
for the U.S. are [33.47,41.84,50.21], which are the possible base
prices of carbon in 2020-USD. The AT uses the mean emissions
of 200 ST simulation runs as a target emissions trajectory.
Emissions under Adaptive vs. Static Carbon Taxes. Figure
1 compares the annual carbon emissions under ST and AT carbon
taxes based on the countries in Table 2. The emissions trajectories
of all AT simulations except the U.S. appear to reach the same
or lower levels compared to their ST counterparts. Since carbon
emissions are directly proportional to the number of fossil fuel
plants in the system, these curves also indicate the level of
renewable penetration under AT and ST simulations.

Figure 1: Annual carbon emissions under adaptive (dashed) and
static (solid) carbon taxes. Each curve represents the average of 200
independent runs of the MDP.

Effects of Adaptive Carbon Tax on Cost. Figures 2 and 3
compare the effectiveness of the ST and AT tax schedules under
the Sweden-based carbon tax. The black dots represent the points
along this trajectory when the AT simulation checked (but not nec-
essarily adjusted) the carbon tax level against the target trajectory.



Figure 2: Annual carbon emissions for the Sweden-based carbon tax
with uncertainty bounds at 90th and 10th percentiles.

Figure 3: Annual carbon tax collected for the Sweden-based carbon tax
with uncertainty bounds at 90th and 10th percentiles.

As shown in Figure 2, the AT simulation is able to adhere to
the target emissions emissions trajectory, even reaching a slightly
lower annual emissions level by 2050. Figure 3 shows that in
addition to achieving this emissions trajectory, the AT also incurs
a lower carbon tax than the ST from 2020 to 2050. Furthermore,
under the AT there is less uncertainty around the extreme bounds
of tax collected. This indicates that applying an adaptive carbon
tax scheme that gets updated at regular intervals is an effective
way of reducing the carbon tax burden while still fulfilling a
target reduction in carbon emissions.

Strategic Response to Adaptive Carbon Tax. The MDP may
adopt strategic behavior in response to adaptive carbon tax
schemes, forming an S-shaped trajectory of annual carbon emis-
sions trajectory. This is particularly prominent for the U.S.-based
carbon tax; results show the AT (blue) missing the ST (orange)
emissions trajectory by a large margin in 2050, as seen in Figure 4.

The sharp drop right before 2030 in the AT curve followed by
the leveling out in 2045 indicates how the strategic MDP agent
is optimizing differently under the adaptive carbon tax. The first
few renewable plants are relatively cheap to build since storage
costs increase exponentially, so the agent overbuilds early to
induce a downward adjustment in carbon tax. For the U.S.-based
carbon tax, it appears that this early cost reduction is enough to
make up for the higher cost incurred later when the agent is taxed
more for operating more fossil fuel plants. Perhaps this could be

avoided by extending the time horizon so carbon taxes on fossil
fuel plants accumulate further.

Figure 4: Annual carbon emissions for the USA-based carbon tax with
uncertainty bounds at 90th and 10th percentiles.

Out of all the countries, this behavior seems to cause a
significant difference in annual emission levels in 2050 only
for U.S.-based carbon tax. However, Figure 1 reveals early
overbuilding behavior for all of the countries except the U.K. The
AT curves for the Finland, Switzerland, and Sweden-based taxes
all have an inflection point around 2040 past which the AT simu-
lation seems to build renewable plants on average later than its ST
counterpart. This indicates that because the MDP overbuilt early,
it could tolerate being taxed on more fossil fuel plants for longer.
Yet the AT simulations in Finland, Switzerland, and Sweden end
up playing catch-up to build renewable plants because the carbon
prices are higher. The advantage of this is lower average costs
of renewable technology, especially storage; the drawback is that
several years worth of carbon tax was paid unnecessarily.

4 Limitations and Future Work

MDPs are well-suited to modeling the effect of carbon taxes on
energy transition scenarios because they naturally accommodate
strategic decision-making in the face of uncertainty and long
planning horizons. The former highlights potential weaknesses
of adaptive carbon taxes; the latter provides a natural lens to study
the effect of uncertain technological progress. MDPs reveal that,
despite the increase in uncertainty caused by adaptive carbon
taxes, implementing an adaptive carbon tax can substantially
reduce the role of technological uncertainty, resulting in a more
stable tax and investment environment.

MDPs make the inaccurate assumption that agents are rational
actors. Nonetheless, studying the robustness of regulation to
manipulation is important. See, for example, the self-interested
manipulation of LIBOR rates by banks [Duffie and Stein, 2015].

Important questions remain with respect to the S-shaped behav-
ior that arises in response to adaptive carbon taxes. First, does this
behavior occur under more realistic models, for example when
there is political uncertainty in whether a rate will be adjusted, or
if the tax is only ever adjusted upwards? Second, can we design
taxes more intelligently to mitagate the impact of manipulation?
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A Abbreviations
In order of appearance in this paper:

• FF : fossil fuel

• RES : renewable energy source
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• AT : adaptive (carbon) tax
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B Cost Function Components
The cost for a given state state (t,v,r,l,e) and some action a

taken in that state can be calculated as follows:

C(t,v,r,l,e,a)=
∑
f

(Cco2(t)+Cff))

+
∑
r

Cold-res(v)+
∑
a

Cnew-res(v)

+Cold-stor(r,a)+Cnew-stor(v,r,a)

(4)

B.1 Carbon Tax
Cco2(t,l,e)=E(t,l,e)·eff (5)

where eff is the per kWh emissions of a FF plant and E(t) is
the carbon tax calculated at time t. If e is 1, then the carbon price
at MIN(one level above l, highest level) is used; if e is -1, then
the carbon price at MAX(one level below l, lowest level) is used.

B.2 FF Plant Costs

Cff=
cff-cap

lff
+cff-fix ·zff+cff-var ·(zff ·yff ·8760) (6)

where cff-cap is the capital cost of building a FF plant, lff is the
plant lifetime, cff-fix is the fixed O&M cost, cff-var is the variable
O&M cost, zff is the plant size or nameplate capacity, yff is the
capacity factor, and 8760 is the number of hours in 1 year.

B.3 RES Plant Costs

Cold-RES(v)=
cres-cap,v

lres
(7)

Cnew-RES(v)=cres-cap,v (8)

where cres-cap,v is the capital cost of building a renewable
energy plant in tech stage v, and lres is the plant lifetime. We
assume that there are no O&M costs for RES plants.

B.4 Storage Costs

cstor-cap,v=bcbss-cap,v+hcphs-cap,v (9)
cstor-fix=bcbss-fix+hcphs-fix (10)
cstor-var=bcbss-var+hcphs-var (11)

Cold-stor(r,a)=S(r+a)·
(cstor-fix

8760
+cstor-var

)
(12)

Cnew-stor(v,r,a)=(S(r+a)−S(r))·(cstor-cap,v) (13)

where cbss-cap,v and cphs-cap,v are the capital costs of building
battery system and pumped hydro energy storage in tech stage v,
cbss-fix and cphs-fix are the fixed O&M costs of battery systems and
pumped hydro, and cbss-var and cphs-var are the fixed O&M costs
of battery systems and pumped hydro, respectively. We assume
that fixed and variable O&M costs do not depend on tech stage,
mainly because they are negligible compared to the capital costs.
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